\(\int x \sqrt {d+e x^2} (a+b \text {sech}^{-1}(c x)) \, dx\) [132]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 221 \[ \int x \sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right ) \, dx=-\frac {b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{6 c^2}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{3 e}-\frac {b \left (3 c^2 d+e\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \arctan \left (\frac {\sqrt {e} \sqrt {1-c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{6 c^3 \sqrt {e}}-\frac {b d^{3/2} \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \text {arctanh}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {1-c^2 x^2}}\right )}{3 e} \]

[Out]

1/3*(e*x^2+d)^(3/2)*(a+b*arcsech(c*x))/e-1/3*b*d^(3/2)*arctanh((e*x^2+d)^(1/2)/d^(1/2)/(-c^2*x^2+1)^(1/2))*(1/
(c*x+1))^(1/2)*(c*x+1)^(1/2)/e-1/6*b*(3*c^2*d+e)*arctan(e^(1/2)*(-c^2*x^2+1)^(1/2)/c/(e*x^2+d)^(1/2))*(1/(c*x+
1))^(1/2)*(c*x+1)^(1/2)/c^3/e^(1/2)-1/6*b*(1/(c*x+1))^(1/2)*(c*x+1)^(1/2)*(-c^2*x^2+1)^(1/2)*(e*x^2+d)^(1/2)/c
^2

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 221, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.476, Rules used = {6434, 531, 457, 104, 163, 65, 223, 209, 95, 213} \[ \int x \sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right ) \, dx=\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{3 e}-\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \left (3 c^2 d+e\right ) \arctan \left (\frac {\sqrt {e} \sqrt {1-c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{6 c^3 \sqrt {e}}-\frac {b d^{3/2} \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \text {arctanh}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {1-c^2 x^2}}\right )}{3 e}-\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{6 c^2} \]

[In]

Int[x*Sqrt[d + e*x^2]*(a + b*ArcSech[c*x]),x]

[Out]

-1/6*(b*Sqrt[(1 + c*x)^(-1)]*Sqrt[1 + c*x]*Sqrt[1 - c^2*x^2]*Sqrt[d + e*x^2])/c^2 + ((d + e*x^2)^(3/2)*(a + b*
ArcSech[c*x]))/(3*e) - (b*(3*c^2*d + e)*Sqrt[(1 + c*x)^(-1)]*Sqrt[1 + c*x]*ArcTan[(Sqrt[e]*Sqrt[1 - c^2*x^2])/
(c*Sqrt[d + e*x^2])])/(6*c^3*Sqrt[e]) - (b*d^(3/2)*Sqrt[(1 + c*x)^(-1)]*Sqrt[1 + c*x]*ArcTanh[Sqrt[d + e*x^2]/
(Sqrt[d]*Sqrt[1 - c^2*x^2])])/(3*e)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 104

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(a +
b*x)^(m - 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 1))), x] + Dist[1/(d*f*(m + n + p + 1)), I
nt[(a + b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1)
+ c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 163

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 531

Int[(u_.)*((c_) + (d_.)*(x_)^(n_.))^(q_.)*((a1_) + (b1_.)*(x_)^(non2_.))^(p_.)*((a2_) + (b2_.)*(x_)^(non2_.))^
(p_.), x_Symbol] :> Int[u*(a1*a2 + b1*b2*x^n)^p*(c + d*x^n)^q, x] /; FreeQ[{a1, b1, a2, b2, c, d, n, p, q}, x]
 && EqQ[non2, n/2] && EqQ[a2*b1 + a1*b2, 0] && (IntegerQ[p] || (GtQ[a1, 0] && GtQ[a2, 0]))

Rule 6434

Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))*(x_)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(p +
1)*((a + b*ArcSech[c*x])/(2*e*(p + 1))), x] + Dist[b*(Sqrt[1 + c*x]/(2*e*(p + 1)))*Sqrt[1/(1 + c*x)], Int[(d +
 e*x^2)^(p + 1)/(x*Sqrt[1 - c*x]*Sqrt[1 + c*x]), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[p, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{3 e}+\frac {\left (b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \int \frac {\left (d+e x^2\right )^{3/2}}{x \sqrt {1-c x} \sqrt {1+c x}} \, dx}{3 e} \\ & = \frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{3 e}+\frac {\left (b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \int \frac {\left (d+e x^2\right )^{3/2}}{x \sqrt {1-c^2 x^2}} \, dx}{3 e} \\ & = \frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{3 e}+\frac {\left (b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \text {Subst}\left (\int \frac {(d+e x)^{3/2}}{x \sqrt {1-c^2 x}} \, dx,x,x^2\right )}{6 e} \\ & = -\frac {b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{6 c^2}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{3 e}-\frac {\left (b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \text {Subst}\left (\int \frac {-c^2 d^2-\frac {1}{2} e \left (3 c^2 d+e\right ) x}{x \sqrt {1-c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{6 c^2 e} \\ & = -\frac {b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{6 c^2}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{3 e}+\frac {\left (b d^2 \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {1-c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{6 e}+\frac {\left (b \left (3 c^2 d+e\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{12 c^2} \\ & = -\frac {b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{6 c^2}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{3 e}+\frac {\left (b d^2 \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \text {Subst}\left (\int \frac {1}{-d+x^2} \, dx,x,\frac {\sqrt {d+e x^2}}{\sqrt {1-c^2 x^2}}\right )}{3 e}-\frac {\left (b \left (3 c^2 d+e\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {d+\frac {e}{c^2}-\frac {e x^2}{c^2}}} \, dx,x,\sqrt {1-c^2 x^2}\right )}{6 c^4} \\ & = -\frac {b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{6 c^2}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{3 e}-\frac {b d^{3/2} \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \text {arctanh}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {1-c^2 x^2}}\right )}{3 e}-\frac {\left (b \left (3 c^2 d+e\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \text {Subst}\left (\int \frac {1}{1+\frac {e x^2}{c^2}} \, dx,x,\frac {\sqrt {1-c^2 x^2}}{\sqrt {d+e x^2}}\right )}{6 c^4} \\ & = -\frac {b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{6 c^2}+\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{3 e}-\frac {b \left (3 c^2 d+e\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \arctan \left (\frac {\sqrt {e} \sqrt {1-c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{6 c^3 \sqrt {e}}-\frac {b d^{3/2} \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \text {arctanh}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {1-c^2 x^2}}\right )}{3 e} \\ \end{align*}

Mathematica [A] (verified)

Time = 22.76 (sec) , antiderivative size = 307, normalized size of antiderivative = 1.39 \[ \int x \sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right ) \, dx=\frac {\sqrt {d+e x^2} \left (-b e \sqrt {\frac {1-c x}{1+c x}} (1+c x)+2 a c^2 \left (d+e x^2\right )+2 b c^2 \left (d+e x^2\right ) \text {sech}^{-1}(c x)\right )}{6 c^2 e}+\frac {b \sqrt {\frac {1-c x}{1+c x}} \sqrt {1-c^2 x^2} \left (\sqrt {-c^2} \sqrt {-c^2 d-e} \sqrt {e} \left (3 c^2 d+e\right ) \sqrt {\frac {c^2 \left (d+e x^2\right )}{c^2 d+e}} \arcsin \left (\frac {c \sqrt {e} \sqrt {1-c^2 x^2}}{\sqrt {-c^2} \sqrt {-c^2 d-e}}\right )+2 c^5 d^{3/2} \sqrt {-d-e x^2} \arctan \left (\frac {\sqrt {d} \sqrt {1-c^2 x^2}}{\sqrt {-d-e x^2}}\right )\right )}{6 c^5 e (-1+c x) \sqrt {d+e x^2}} \]

[In]

Integrate[x*Sqrt[d + e*x^2]*(a + b*ArcSech[c*x]),x]

[Out]

(Sqrt[d + e*x^2]*(-(b*e*Sqrt[(1 - c*x)/(1 + c*x)]*(1 + c*x)) + 2*a*c^2*(d + e*x^2) + 2*b*c^2*(d + e*x^2)*ArcSe
ch[c*x]))/(6*c^2*e) + (b*Sqrt[(1 - c*x)/(1 + c*x)]*Sqrt[1 - c^2*x^2]*(Sqrt[-c^2]*Sqrt[-(c^2*d) - e]*Sqrt[e]*(3
*c^2*d + e)*Sqrt[(c^2*(d + e*x^2))/(c^2*d + e)]*ArcSin[(c*Sqrt[e]*Sqrt[1 - c^2*x^2])/(Sqrt[-c^2]*Sqrt[-(c^2*d)
 - e])] + 2*c^5*d^(3/2)*Sqrt[-d - e*x^2]*ArcTan[(Sqrt[d]*Sqrt[1 - c^2*x^2])/Sqrt[-d - e*x^2]]))/(6*c^5*e*(-1 +
 c*x)*Sqrt[d + e*x^2])

Maple [F]

\[\int x \left (a +b \,\operatorname {arcsech}\left (c x \right )\right ) \sqrt {e \,x^{2}+d}d x\]

[In]

int(x*(a+b*arcsech(c*x))*(e*x^2+d)^(1/2),x)

[Out]

int(x*(a+b*arcsech(c*x))*(e*x^2+d)^(1/2),x)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 328 vs. \(2 (131) = 262\).

Time = 0.45 (sec) , antiderivative size = 1382, normalized size of antiderivative = 6.25 \[ \int x \sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right ) \, dx=\text {Too large to display} \]

[In]

integrate(x*(a+b*arcsech(c*x))*(e*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

[1/24*(2*b*c^3*d^(3/2)*log(((c^4*d^2 - 6*c^2*d*e + e^2)*x^4 - 8*(c^2*d^2 - d*e)*x^2 + 4*((c^3*d - c*e)*x^3 - 2
*c*d*x)*sqrt(e*x^2 + d)*sqrt(d)*sqrt(-(c^2*x^2 - 1)/(c^2*x^2)) + 8*d^2)/x^4) - (3*b*c^2*d + b*e)*sqrt(-e)*log(
8*c^4*e^2*x^4 + c^4*d^2 - 6*c^2*d*e + 8*(c^4*d*e - c^2*e^2)*x^2 - 4*(2*c^4*e*x^3 + (c^4*d - c^2*e)*x)*sqrt(e*x
^2 + d)*sqrt(-e)*sqrt(-(c^2*x^2 - 1)/(c^2*x^2)) + e^2) + 8*(b*c^3*e*x^2 + b*c^3*d)*sqrt(e*x^2 + d)*log((c*x*sq
rt(-(c^2*x^2 - 1)/(c^2*x^2)) + 1)/(c*x)) + 4*(2*a*c^3*e*x^2 - b*c^2*e*x*sqrt(-(c^2*x^2 - 1)/(c^2*x^2)) + 2*a*c
^3*d)*sqrt(e*x^2 + d))/(c^3*e), 1/12*(b*c^3*d^(3/2)*log(((c^4*d^2 - 6*c^2*d*e + e^2)*x^4 - 8*(c^2*d^2 - d*e)*x
^2 + 4*((c^3*d - c*e)*x^3 - 2*c*d*x)*sqrt(e*x^2 + d)*sqrt(d)*sqrt(-(c^2*x^2 - 1)/(c^2*x^2)) + 8*d^2)/x^4) - (3
*b*c^2*d + b*e)*sqrt(e)*arctan(1/2*(2*c^2*e*x^3 + (c^2*d - e)*x)*sqrt(e*x^2 + d)*sqrt(e)*sqrt(-(c^2*x^2 - 1)/(
c^2*x^2))/(c^2*e^2*x^4 + (c^2*d*e - e^2)*x^2 - d*e)) + 4*(b*c^3*e*x^2 + b*c^3*d)*sqrt(e*x^2 + d)*log((c*x*sqrt
(-(c^2*x^2 - 1)/(c^2*x^2)) + 1)/(c*x)) + 2*(2*a*c^3*e*x^2 - b*c^2*e*x*sqrt(-(c^2*x^2 - 1)/(c^2*x^2)) + 2*a*c^3
*d)*sqrt(e*x^2 + d))/(c^3*e), -1/24*(4*b*c^3*sqrt(-d)*d*arctan(-1/2*((c^3*d - c*e)*x^3 - 2*c*d*x)*sqrt(e*x^2 +
 d)*sqrt(-d)*sqrt(-(c^2*x^2 - 1)/(c^2*x^2))/(c^2*d*e*x^4 + (c^2*d^2 - d*e)*x^2 - d^2)) + (3*b*c^2*d + b*e)*sqr
t(-e)*log(8*c^4*e^2*x^4 + c^4*d^2 - 6*c^2*d*e + 8*(c^4*d*e - c^2*e^2)*x^2 - 4*(2*c^4*e*x^3 + (c^4*d - c^2*e)*x
)*sqrt(e*x^2 + d)*sqrt(-e)*sqrt(-(c^2*x^2 - 1)/(c^2*x^2)) + e^2) - 8*(b*c^3*e*x^2 + b*c^3*d)*sqrt(e*x^2 + d)*l
og((c*x*sqrt(-(c^2*x^2 - 1)/(c^2*x^2)) + 1)/(c*x)) - 4*(2*a*c^3*e*x^2 - b*c^2*e*x*sqrt(-(c^2*x^2 - 1)/(c^2*x^2
)) + 2*a*c^3*d)*sqrt(e*x^2 + d))/(c^3*e), -1/12*(2*b*c^3*sqrt(-d)*d*arctan(-1/2*((c^3*d - c*e)*x^3 - 2*c*d*x)*
sqrt(e*x^2 + d)*sqrt(-d)*sqrt(-(c^2*x^2 - 1)/(c^2*x^2))/(c^2*d*e*x^4 + (c^2*d^2 - d*e)*x^2 - d^2)) + (3*b*c^2*
d + b*e)*sqrt(e)*arctan(1/2*(2*c^2*e*x^3 + (c^2*d - e)*x)*sqrt(e*x^2 + d)*sqrt(e)*sqrt(-(c^2*x^2 - 1)/(c^2*x^2
))/(c^2*e^2*x^4 + (c^2*d*e - e^2)*x^2 - d*e)) - 4*(b*c^3*e*x^2 + b*c^3*d)*sqrt(e*x^2 + d)*log((c*x*sqrt(-(c^2*
x^2 - 1)/(c^2*x^2)) + 1)/(c*x)) - 2*(2*a*c^3*e*x^2 - b*c^2*e*x*sqrt(-(c^2*x^2 - 1)/(c^2*x^2)) + 2*a*c^3*d)*sqr
t(e*x^2 + d))/(c^3*e)]

Sympy [F]

\[ \int x \sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right ) \, dx=\int x \left (a + b \operatorname {asech}{\left (c x \right )}\right ) \sqrt {d + e x^{2}}\, dx \]

[In]

integrate(x*(a+b*asech(c*x))*(e*x**2+d)**(1/2),x)

[Out]

Integral(x*(a + b*asech(c*x))*sqrt(d + e*x**2), x)

Maxima [F]

\[ \int x \sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right ) \, dx=\int { \sqrt {e x^{2} + d} {\left (b \operatorname {arsech}\left (c x\right ) + a\right )} x \,d x } \]

[In]

integrate(x*(a+b*arcsech(c*x))*(e*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

1/3*((e*x^2 + d)^(3/2)*log(sqrt(c*x + 1)*sqrt(-c*x + 1) + 1)/e - 3*integrate(1/3*sqrt(e*x^2 + d)*(6*(c^2*e*x^2
 - e)*x*log(sqrt(x)) + 3*(c^2*e*x^2*log(c) - e*log(c))*x + (6*(c^2*e*x^2 - e)*x*log(sqrt(x)) + ((3*e*log(c) +
e)*c^2*x^2 + c^2*d - 3*e*log(c))*x)*e^(1/2*log(c*x + 1) + 1/2*log(-c*x + 1)))/(c^2*e*x^2 + (c^2*e*x^2 - e)*e^(
1/2*log(c*x + 1) + 1/2*log(-c*x + 1)) - e), x))*b + 1/3*(e*x^2 + d)^(3/2)*a/e

Giac [F]

\[ \int x \sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right ) \, dx=\int { \sqrt {e x^{2} + d} {\left (b \operatorname {arsech}\left (c x\right ) + a\right )} x \,d x } \]

[In]

integrate(x*(a+b*arcsech(c*x))*(e*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(e*x^2 + d)*(b*arcsech(c*x) + a)*x, x)

Mupad [F(-1)]

Timed out. \[ \int x \sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right ) \, dx=\int x\,\sqrt {e\,x^2+d}\,\left (a+b\,\mathrm {acosh}\left (\frac {1}{c\,x}\right )\right ) \,d x \]

[In]

int(x*(d + e*x^2)^(1/2)*(a + b*acosh(1/(c*x))),x)

[Out]

int(x*(d + e*x^2)^(1/2)*(a + b*acosh(1/(c*x))), x)